Glucose sensors made of novel carbon nanotube-gold nanoparticle composites.
نویسندگان
چکیده
Carbon nanotube and metal particle composites have been exploited to fabricate high performance electrochemical devices. However, the physical and chemical procedures to synthesize the composites are labor intensive and inefficient. Our study reveals an one-step wet chemistry method to accomplish fast and controllable production of gold nanoparticle (AuNP) and carbon naotube (CNT) composites. Such a process is sensitive to the surface charge. Especially, when functionalized with carboxyl groups, the CNTs carried negative charges and showed low level association with negatively charged AuNPs. Thermal treatment was employed to decompose the carboxyl groups and render each CNT a charge-free surface thereby achieving a high level AuNP-CNT association. The fabricated glucose sensors demonstrated dependence of their sensitivities to the amount of AuNPs on the CNTs. The enhancement of sensitivity can be attributed to an accelerated electron transfer rate from glucose oxidase Gox to the electrode. The Michaelis-Menten kinetics also indicated improved performance in the glucose sensor made of AuNP-CNTs. Therefore, our research revealed a novel approach to produce metallic nanoparticle and CNT composite for fabricating high performance electrochemical sensors.
منابع مشابه
Engineering Crack Formation in Carbon Nanotube-Silver Nanoparticle Composite Films for Sensitive and Durable Piezoresistive Sensors
We report highly sensitive and reliable strain sensors based on silver nanoparticle (AgNP) and carbon nanotube (CNT) composite thin films. The CNT/AgNP was prepared by a screen printing process using a mixture of a CNT paste and an AgNP ink. It is discovered that the sensitivity of such sensors are highly dependent on the crack formation in the composites. By altering the substrate use and the ...
متن کاملGold-carbon nanotube nanocomposites: synthesis and applications
Nanocomposites are combinations of nanomaterials with other molecules or nanoscaled materials, such as nanoparticles or nanotubes. In general, these novel nanocomposites have different physical and chemical properties from the constituent particles or wires, and will thus allow new kinds of applications. Among these nanocomposites, gold-carbon nanotube (AuCNT) composites are of particular inter...
متن کاملA Novel Method to Decrease Micro-residual Stresses of Fibrous Composites by Adding Carbon Nanotube
In this research, a novel method to decrease micro-residual stresses of fibrous composites by adding carbon nanotubes (CNTs) is proposed in detail. The negative coefficient of thermal expansion and the high young’s modulus of CNTs can be utilized to counterbalance the process induced residual stresses in composites. To this end, first, the effects of adding CNTs to the matrix of fibrous composi...
متن کاملSingle walled carbon nanotubes as reporters for the optical detection of glucose.
This article reviews current efforts to make glucose sensors based on the inherent optical properties of single walled carbon nanotubes. The advantages of single walled carbon nanotubes over traditional organic and nanoparticle fluorophores for in vivo-sensing applications are discussed. Two recent glucose sensors made by our group are described, with the first being an enzyme-based glucose sen...
متن کاملSingle-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring.
This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioFactors
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2007